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Abstract

Accurate knowledge of size, density and composition of nanoparticles (NPs) is of major 

importance for their applications. In this work the hydrodynamic characterization of polydisperse 

core-shell NPs by means of analytical ultracentrifugation (AUC) is addressed. AUC is one of the 

most accurate techniques for the characterization of NPs in the liquid phase because it can resolve 

particle size distributions (PSDs) with unrivaled resolution and detail. Small NPs have to be 

considered as core-shell systems when dispersed in a liquid since a solvation layer and stabilizer 

shell will significantly contribute to the particle’s hydrodynamic diameter and effective density. 

AUC measures the sedimentation and diffusion transport of the analytes, which are affected by the 

core-shell compositional properties. This work demonstrates that polydisperse and thus widely 

distributed NPs pose significant challenges for current state-of-the-art data evaluation methods. 

Existing methods either have insufficient resolution or do not correctly reproduce the core-shell 

properties. First, we investigate the performance of different data evaluation models by means of 

simulated data. Then, we propose a new methodology to address the core-shell properties of NPs. 

This method is based on the parametrically constrained spectrum analysis and offers complete 

access to the size and effective density of polydisperse NPs. Our study is complemented using 

experimental data derived for ZnO and CuInS2 NPs, which do not have a monodisperse PSD. For 

the first time, the size and effective density of such structures can be resolved with high resolution 

by means of a two-dimensional AUC analysis approach.

TOC image

A tool for the 2D analysis of polydisperse core-shell nanoparticles using analytical 

ultracentrifugation is presented. It allows for the accurate determination of sizes and densities of 

sub-10 nm particles, thereby revealing important information on their core-shell structure.
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1. Introduction

Nanoparticles (NPs) find a wide range of applications in nanotechnology and 

biomedicine.1–4 In order to guarantee a high performance in later applications, accurate 

characterization of NPs is required. Various techniques have been developed to characterize 

NPs being either directly synthesized in solution or deposited from solution on a solid 

substrate. Analytical ultracentrifugation (AUC) is one of the most accurate techniques for 

the characterization of NPs in the liquid phase because it can resolve particle size 

distributions (PSDs) with high resolution and detail also in the sub-nm range.5–8 Sizes 

ranging from less than one nanometer to a few micrometers can be analyzed depending on 

the particle’s density.

Small NPs must be considered as core-shell systems when dispersed in a liquid. The NP 

surface is functionalized by means of ligands or stabilizer molecules specifically binding to 

it and a solvation layer that further adds to the NP diameter. Therefore, the shell consists of 

two parts, the functionalization and the solvation layer. For the sake of simplicity, a core-

shell model will be used in this work, incorporating contributions from both parts in the 

shell. The shell increases the hydrodynamic diameter of the NP and contributes to the partial 

specific volume, which is given here as the inverse of the density of the sedimenting NP, 

which also carries with it a solvation layer. To differentiate the observed density and partial 

specific volume from the anhydrous NP density and volume, we refer to it here as the 

“effective” density and “effective” partial specific volume. Since AUC measures 

sedimentation and diffusion transport of the analytes, the effect of shell composition on the 

size and effective partial specific volume directly translates into changes in sedimentation 

and diffusion properties.

Sedimentation and diffusion transport in AUC experiments is modelled by finite element 

solutions of the Lamm equation. High performance techniques such as the two-dimensional 

spectrum analysis (2DSA) and parametrically constrained spectrum analysis (PCSA) 

implemented in the UltraScan3 software or the c(s, D) analysis implemented in Sedfit offer 

the possibility to address polydispersity in more than one dimension.9–11 This allows for the 

simultaneous analysis of size and shape anisotropy of macromolecules and NPs under the 
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condition that the sedimentation and diffusion information is sufficiently represented in the 

data. Recent developments in data evaluation considerably widened the possibilities of NP 

analysis. Carney et al. showed for the first time that simultaneous characterization of NPs 

with respect to size and effective density becomes possible by applying 2D analysis to 

sedimentation velocity (SV) data.12 Recently, it was shown by Demeler et al. that 

characterization of size anisotropy and heterogeneity of the effective density of NPs can be 

determined by SV experiments using the Custom Grid 2DSA (CG).13 In both cases it has 

been demonstrated that these models work well for samples of fairly monodisperse NPs. 

This opens up a variety of new applications as the core-shell composition of NPs can now be 

measured in solution.

However, the majority of particle production methods, either performed as bottom up 

synthesis or top down comminution or emulsification, will yield polydisperse PSDs. As a 

consequence, most samples will contain a large number of different species, just slightly 

varying in size and effective density. However, this poses special challenges to high 

resolution algorithms because of the reduced experimental signal available from each 

individual species. Furthermore, a higher resolution grid that tries to represent the larger 

number of species also increases the degeneracy of the 2DSA solutions. In addition, 

simulating a large number of solutes makes the solution sensitive to systematic and random 

noise effects, which are present in any experimental data.

Mittal et al. compared the performance of different methods for the analysis of SV data with 

respect to NPs.14 However, the applicability of modern tools for the simultaneous analysis of 

size and effective density was not addressed and thus only one-dimensional (1D) evaluations 

of the sedimentation coefficients were compared. Therefore, polydisperse and multimodal 

NPs have never been investigated by powerful multidimensional AUC analysis, even though 

these samples represent the majority of systems in nanotechnology.

In this work, we will place special emphasis on the analysis of NPs with different levels of 

polydispersity in size and effective density. By simulating a variety of distributions 

containing up to 5,000 solutes, the effects of random noise and rotor speed on the evaluation 

results from high performance methods can be compared. Monomodal fairly monodisperse 

(σ = 0.1) NPs, multimodal but fairly monodisperse (σ < 0.15) NPs as well as a multimodal 

polydisperse (σ < 1.0) distribution of NPs will be considered. Our results show that a newly 

developed parameterization for the PCSA for core-shell NPs achieves a more reliable model 

than any other technique developed so far. The PCSA method is designed to model systems 

where a systematic change in two hydrodynamic parameters can describe the heterogeneity 

in the system. Our new parameterization is especially designed for core-shell NPs and is 

capable of analyzing broad PSDs with high resolution and simultaneously providing the 

core-shell characteristics of these systems. Even shell thicknesses varying with NP size can 

be addressed in principle by the proposed methodology. The simulated data will be 

complemented by AUC experiments with ZnO and CuInS2 quantum dots (QDs) representing 

typical examples of polydisperse core-shell NPs.
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2. Theory

2.1 Core-shell nanoparticles

Strictly speaking, any NP dispersed in a liquid has to be treated as a core-shell system. 

Ligands, ions, stabilizer and solvent molecules will form a thin layer on the NP surface. As a 

consequence, the effective density or effective partial specific volume of the sedimenting 

particle will be affected by the shell morphology (thickness, density). While the shell 

thickness can often be considered constant, the core diameter can vary due to NP growth and 

ripening. This leads to a decrease in the effective partial specific volume with increasing 

core diameter and sedimentation coefficient as the effective density approaches the value of 

the particle core. A schematic representation of this dependency is illustrated in Figure 1.

2.2 Theory of sedimentation

The sedimentation of NPs has been described by Lamm, who considered the change in 

concentration of an analyte in a gravitational field by sedimentation and diffusion in a sector 

shaped centrifuge cell:15

(1)

In this equation c denotes the concentration, r the radial distance from the axis of rotation 

and ω the angular velocity. The sedimentation coefficient s and diffusion coefficient D can 

be measured by AUC. Carney et al. were the first to show that these two quantities can be 

used to determine the hydrodynamic diameter and effective density of nanoparticles 

provided that the shape anisotropy is known.12

D is linked to the hydrodynamic diameter dH via Stokes-Einstein’s equation:

(2)

kB is the Boltzmann constant, T the temperature in Kelvin and η is the viscosity of the 

solvent. In case of spherical shape, Stokes’ equation allows to calculate the sedimentation 

equivalent effective diameter of the particle including all contributions from the surrounding 

shell:

(3)

ρs is the density of the solvent and ρp,eff is the effective particle density. dH can further be 

linked to the volume equivalent diameter through the frictional ratio f/f0:
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(4)

If the particle is spherical, f/f0 equals unity and the hydrodynamic diameter is equal to the 

volume equivalent as well as effective diameter. This allows calculation of ρp,eff or the 

effective partial specific volume :

(5)

A detailed derivation of the equations discussed here is also given in the supporting 

information (SI), section 1.

In summary, information on the hydrodynamic diameter and the effective density of the 

particle including all contributions from the shell can be derived from a single AUC 

experiment as long as s and D can be accurately measured and the shape of the particles is 

known. If detailed knowledge of the shape is not available, sedimentation and diffusion data 

derived by AUC could be misinterpreted. Potential shape induced errors for  and the 

calculated shell thicknesses are discussed in the SI, section 2.

2.3 Data evaluation strategies for core-shell nanoparticles

Owed to the nature of NP synthesis, a large number of different NP sizes can exist 

simultaneously in solution. To fully describe the core-shell properties of NPs, both 

parameters,  and s, have to be determined. As discussed in references12 and13 as well as 

the previous section, both parameters can be obtained in terms of the sedimentation and 

diffusion coefficients fitted to a SV experiment when additional prior knowledge, such as 

particle anisotropy or molar mass, are known. In the special cases considered here, particle 

anisotropy is assumed to be constant for all particles. Then, these parameters can be further 

interpreted in terms of the hydrodynamic diameter and effective density. Assuming that the 

density of the solvent in the solvation layer is the same as the bulk density or that the 

solvation layer does not add to the hydrodynamic diameter, the shell thickness can also be 

estimated based on a mass conservation approach.12, 16, 17

Recent studies have revealed that AUC is a highly accurate technique for the simultaneous 

investigation of core-shell properties of NPs in solution. Being sensitive to the mass as well 

as the hydrodynamic diameter, it grants multidimensional access to these properties. New 

generations of direct boundary models offer new insights from AUC data because two-

dimensional (2D) analysis in combination with noise fitting is possible. Earlier methods like 

c(s) required assumption of a fixed shape (f/f0) and  to perform a direct boundary 

analysis.

The c(s, D) analysis in Sedfit and the 2DSA in UltraScan3 allow for the independent 

determination of s and D. In addition, UltraScan3 offers the possibility to generate custom 
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grids (CG), which allows variation of two selected parameters such as s and  in the 2D 

space. High performance computing can further be performed using UltraScan3, which 

permits use of higher resolution grids and greatly enhances throughput. This is critical for 

the analysis of multiwavelength (MWL) data.18

Unlike CG allowing for multiple combinations of hydrodynamic parameters, the PCSA 

implementation in UltraScan versions prior to release version 1977 provided access to 

variations of f/f0 as a function of s. This makes sense for systems with constant  and 

predictable anisotropy changes as a function of mass, such as rods of increasing length. 

However, as discussed above, spherical core-shell NPs can be perfectly fitted by the PCSA 

reparameterized in terms of the sedimentation coefficient and effective partial specific 

volume because of their unique correspondence as shown in Figure 1. This is of greater 

interest to us than the constant shape anisotropy of many NPs which tend to remain spherical 

regardless of size. However, parameterization via a straight or horizontal line or an 

increasing or decreasing sigmoidal function is not suitable to mathematically reproduce the 

change of s versus  for most NP systems.

In this work, we expanded the PCSA in such a way that it can handle any variation of 

parameters. Here the variation of  versus s is of interest. Moreover, we sought of a 

parameterization correctly representing core-shell systems. Previous parameterizations relied 

on only one (horizontal line) or two (straight line, sigmoidal) variables. An empirical 2nd 

order power law with three variables was found to fit the curve of s versus  developed 

for a core-shell system (see Figure 1) very well (R2 > 0.99):

(6)

During the parameterization of the 2D space the parameters a, b and c are varied based on 

the minimum and maximum x- and y-range. Here, a has units of [s−1 ] = cm3/gS, c has 

units of [ ] = cm3/g and b is dimensionless. It is important to note that s and  are 

used for the parameterization, while s and D are fitted. The transformation of s and  to 

the fitted s and D combinations is based on Eqn. 5 and entirely rigorous. It only requires the 

assumption of a known shape anisotropy. No assumption on the functionalization or 

solvation properties is made up to this point. More information about the equations for the 

calculations of those variables can be found online in the open source wiki of UltraScan3, 

which provides access to the source code: http://wiki.bcf2.uthscsa.edu/ultrascan3/.

Moreover, data retrieved from the analysis can always be plotted and interpreted in terms of 

s and D, and many other. Options for parameterization of other valid combinations of 

parameters exist. In the present work  and s were chosen for parameterization because 

of the aforementioned reasons. An example set of parametric curves based on the 2nd order 

power law is shown in Figure 2. The density of curves can be easily increased by choosing a 

higher variation count. The variation count K gives the number of variations per variable. 

For the 2nd order power law this results in K3 combinations. For a detailed description of the 

PCSA algorithm the reader is referred to the work of Gorbet et al.11 Briefly, the PCSA 

discretizes s and D along the parametric curves and fits the amplitudes of individual terms in 
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the linear combinations of the corresponding Lamm equation solutions to the experimental 

data. The parametric curve giving rise to the lowest root mean square deviation (RMSD) will 

then represent the best parameterization for the underlying distribution.

As discussed above, when s and  are varied in the PCSA, the assumption is made that 

f/f0 is known and constant for all analytes in the mixture. For core-shell NPs with variable 

 a constant f/f0 has to be verified by other techniques, e.g. transmission electron 

microscopy (TEM). Fortunately, in a first approximation many particulate systems can be 

treated as spherical. However, in the case of rods or sheets with variable anisotropies or 

mixtures of different shapes, a unique solution is not available. Thus, knowledge of the 

particle shape is at the core of this methodology and therefore immediately constrains the 

approach to selected systems in nanotechnology.

3. Methods and materials

3.1 Materials and sample preparation

ZnO NPs—Zinc acetate dihydrate (ZnAc2 × 2H2O, z.A., VWR Germany), lithium 

hydroxide (LiOH, 98 %, VWR Germany) and absolute ethanol (EtOH, 99.98 %, VWR 

Germany) were used without any further purification. The ZnO NPs were prepared based on 

the routine developed by Spanhel and Meulenkamp.19, 20 2.195 g ZnAc2 × 2H2O (0.01 mol) 

were solved in 100 ml EtOH and refluxed at 80 °C for 180 min. Meanwhile, 100 ml 

ethanolic solution of LiOH (0.2395 g, 0.01 mol) was prepared. After reflux of the zinc 

precursor solution and its subsequent cooling to room temperature the two solutions were 

mixed and ZnO NPs formed. Immediately after mixing, the suspension was stored in an 

incubator (LAB-Therm series, Kuhner, Switzerland) without shaking at 35 °C. After 

ripening for 3 h and 4 h, a small sample was taken from the colloidal dispersion and was 

kept at about −20 °C to prevent any ageing during storage before analysis by AUC.17

CuInS2 NPs—Copper(I) acetate (CuAc, 97 %), indium(III) acetate (InAc3, 99.999 %), 1-

octadecene (1-ODE, 95 %) and 1-dodecanethiol (1-DDT, ≥ 98 %) were obtained from 

Aldrich. Toluene (99.5 %) was purchased from Acros. Acetone (≥ 99.8 %) and chloroform 

(CHCl3, ≥ 99 %) were obtained from Roth. All chemicals were used as received and without 

further purification. Batch synthesis of the CuInS2 QDs was performed in a 50 ml three-

necked round bottom flask using a Schlenk line.21, 22 1-ODE was degassed minimum 30 

min prior to synthesis. CuAc (81 mg, 0.66 mmol), InAc3 (193 mg, 0.66 mmol), 1-DDT (1.5 

ml, 6.3 mmol) and 1-ODE (14 ml) were added into the flask and degassed by pulling 

vacuum for 10 min, followed by N2 bubbling for 1 min. The procedure was repeated three 

times. Afterwards, the mixture was heated to 240 °C using a heating mantle. The reaction 

was carried out for 1 h and then cooled down quickly to room temperature by using a water 

bath. The product was purified with a mixture of CHCl3, acetic acid and acetone using five 

cycles of centrifugation.23 For the AUC analysis, the purified and dried product was 

redispersed in toluene and diluted to an optical density of about 0.7 at 350 nm using a quartz 

glass cuvette with an optical path length of 10 mm.
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3.2 Simulation of synthetic data

All NP simulations were calculated with a Lamm equation solution based on the finite-

element method (FEM) proposed by Claverie et al. with a constant time grid and a regular 

radial grid containing 10,000 radial points.24 UltraScan3 (release version 1977) was used to 

carry out the simulations. The simulated solution was interpolated onto a radial grid with 10 

μm spacing. The same solution was used before as a reference solution for determining the 

accuracy of the adaptive space-time FEM (ASTFEM) solution.25 Each experiment was 

simulated with 200 – 300 equally spaced scans depending on the rotor speed and width of 

the distributions, such that the moving boundary spanned the entire solution column. The 

meniscus position was fixed at 5.8 cm and the bottom of the cell position was held constant 

at 7.2 cm for all simulations. Rotor acceleration was simulated during the finite-element 

calculation for each dataset.

Three different types of distributions with increasing complexity were simulated using up to 

four normally distributed (Gaussian) probability functions: model #1 (narrow monomodal 

PSD), model #2 (narrow multimodal PSD) and model #3 (multimodal polydisperse PSD). 

For these PSDs, the core diameter of the ZnO NPs was varied, while keeping the thickness 

of the shell constant (0.235 nm).

In practice, the number of ligands bound per particle surface can further alter due to changes 

of the surface chemistry. To reflect such changes, a fourth model based on model #3 was 

simulated with identical distribution parameters but a shell of decreasing thickness. The 

thickness of the shell was varied linearly between 0.5 nm for a core diameter of 0 nm and 

0.2 nm for a core diameter of 15 nm (−0.02 nm/nm), see Figure S8 for a graphical 

representation. The expected values, standard deviations and relative concentrations for all 

models can be found in Table 1.

For all calculations the density and viscosity of the solution was assumed to be that of water 

at 20 °C (0.9982 g/cm3, 1.0019 cp). The  of the core was assumed to be 0.1783 cm3/g (pure 

ZnO) and the  of the shell was set at 0.9524 cm3/g (pure acetic acid). The effect of 

solvation on the shell thickness and density was not considered for the simulations for the 

sake of simplicity. For model #1 – #3 we further compared different levels of random noise 

proportional to the loading concentration of 1.0 OD (0.1 %, 0.5 %, 2.0 %) as a “worst-case” 

scenario (see Chapter 12 in the SI for more discussion) as well as rotor speeds (10 krpm, 20 

krpm, 40 krpm) to assess their influence on the performance of the analysis and the obtained 

distributions. Model #4 was simulated at a rotor speed of 20 krpm and a random noise level 

of 0.05 %, which is a typical value achieved in an AUC experiment. Time and radially 

invariant noise with levels of 0.1 % each were simulated for all datasets to mimic 

imperfections being present in any experiment. However, it should be noted that such type of 

noise can be effectively removed mathematically as it has been described in26 and, as 

implemented in UltraScan3, in27.

The simulated SV profiles are shown in Figures S4 – S7 in the SI for all models and 

simulation parameters.
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3.3 Methods and measurements

Analytical ultracentrifugation—A modified preparative ultracentrifuge, type Optima 

L-90K from Beckman Coulter, with an integrated UV/visible MWL detector was used to 

acquire experimental data.8, 28 Titanium and aluminum centerpieces with path lengths of 12 

mm were used for all experiments. For the ZnO NPs SV data was acquired with a radial step 

size of 50 μm at 15 krpm, 20 °C and a wavelength of 270 nm. SV data for CuInS2 NPs was 

acquired at the same radial step size at a rotor speed of 25 krpm, 25 °C and a wavelength of 

350 nm.

Data analysis—Data were evaluated with UltraScan3 and Sedfit. In Sedfit (version 14.6e), 

the c(s) and c(s, D) analyses were used.10, 29 For the c(s) analysis, data were fitted with a 

second derivative regularization using a confidence level (F-ratios) of 0.9 and a resolution of 

100 grid points. For the c(s, D) analysis, data were fitted with a second derivative 

regularization using confidence levels (F-ratios) of 0.9 for s and 0.9 for D. A resolution of 20 

– 50 grid points in s and 20 – 30 grid points in D was used depending on the data analyzed.

UltraScan3 (Version 3.3, Revisions: 1977 – 2059) was used for performing the 2DSA, CG 

and PCSA. The resolution (in s × D) was varied between 80×80 – 120×100 grid points for 

the 2DSA and CG as well as 150 – 400 points in s for the final PCSA depending on the data 

analyzed. A lower resolution of 75 grid points was used to find the best parameterization in 

the PCSA. For the 2DSA/CG, Monte Carlo (MC) analyses with 100 iterations were 

performed. The final model of the PCSA was further smoothed using Tikhonov 

regularization (TR). MC analysis was also tested but TR was chosen due to the prior 

knowledge of the smooth distributions.

4. Results and Discussion

4.1 Synthetic data

4.1.1 Performance of 1D analysis—The performance of 1D analysis was first 

investigated with simulated data. This allowed us to systematically evaluate the performance 

of the data analysis methods as a function of noise and rotor speeds. The c(s) algorithm is a 

subset of the PCSA algorithm (horizontal line parameterization) and is a popular 1D 

approach which has previously been used for the analysis of NPs using constant  and 

f/f0.8, 14, 30, 31 For narrow PSDs, the c(s) analysis performs well if the correct  is 

provided. Detailed results are given in the SI, Figure S9. However, broad PSDs such as it is 

the case for model #2 and #3 will result in a wide range of  values which invalidates the 

direct boundary analysis by c(s) since inappropriate diffusion information is used for the 

solution of the Lamm equation. This resulted in false positives and reduced resolution as can 

be seen in Figure 3 for model #3 (further discussed in reference11). The results on model #1 

and #2 are shown in Figure S9.

In addition, information about  is also not available. Despite the popularity of the c(s) 

method, it is unsuitable for the analysis of broad PSDs of small NPs which display a 

prominent change in  with s, or in cases where the core-shell properties need to be 

investigated.
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4.1.2 Performance of traditional 2-dimensional analysis—In contrast to the 1D 

analysis, 2D approaches allow for the simultaneous and independent analysis of 

sedimentation and diffusion based on a 2D grid space in which the Lamm equations are 

solved. This procedure requires larger computational effort due to the increased parameter 

space.

The c(s, D) algorithm as implemented in Sedfit is an extension of the c(s) analysis and 

allows for covering a grid of about 30×30 sedimentation and diffusion coefficient pairs. The 

best result is further regularized to stabilize the solution against random noise and thus 

provides a smooth sedimentation 2D distribution appearance depending on the degree of 

regularization applied. Our investigations revealed that it performs well for monomodal or 

multiple discrete species comparable to the results presented previously by Carney et al.12 

The individual species were nicely separated, even though the distributions clearly 

broadened for higher noise levels and rotor speeds due to the regularization (see Figures S10 

– S15 for further results). However, when considering polydisperse distributions, such as 

those present in model #3, c(s, D) failed to resolve the populations due to insufficient 

resolution and the regularization applied. This makes c(s, D) unsuitable for most core-shell 

systems where the dependency of  on the particle size is of interest. Only global values 

for the hydrodynamic diameter and effective particle density can be obtained. In addition, 

slow calculations and lack of parallelization capabilities in Sedfit make this method 

impractical for the analysis of MWL data available from the new generation of 

AUC.8, 18, 32, 33

The results of c(s, D) were compared to the 2DSA-MC analyses which were performed next. 

Our studies revealed that a much higher resolution could be obtained compared to the c(s, D) 

analysis and that it works well for fairly monodisperse PSDs. 2DSA-MC also provided 

superior resolution compared to the c(s, D) analyses for the more polydisperse models #2 

and #3 even though significant peak broadening occurred at higher levels of random noise 

and increased rotor speed. Peak broadening can be reduced by a global analysis where all 

rotor speeds are fitted simultaneously. Here, the analysis benefited from the fact that lower 

rotor speeds enhance the diffusion signal of larger particles, while higher rotor speeds help 

with the resolution of smaller species. However, the resolution was too small to have an 

accurate representation of the size and density dependent sedimentation coefficient and the 

size dependent diffusion coefficient. Figures for all 2DSA-MC analyses can be found in the 

SI, Figures S10 – S16.

We used 2DSA in combination with custom grids (CG) in the next step to allow for a more 

detailed picture of the capabilities of 2DSA to analyze polydisperse core-shell NPs. Demeler 

et al. have recently shown that the high performance analysis 2DSA can be used to resolve 

the core-shell morphology of NPs when applying custom grids.13 We compared the 

performance of the CG-MC for the monodisperse model #1 at a very high level of random 

noise (2 %) and the highly polydisperse model #3 at a moderate level of random noise 

(0.5 %). Even though CG-MC performs well at very low levels of random noise (0.1 %) and 

moderate rotor speeds, peak broadening occurs for  at larger noise levels and higher 

rotor speeds as can be seen in Figure 4 (indicated by arrows). Global speed analyses again 

provided increased resolution. These results are consistent with the results obtained by 

Walter et al. Page 10

Analyst. Author manuscript; available in PMC 2017 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2DSA-MC analysis, which is based on the same mathematical principles. For model #3, 

peak splitting occurred in addition to peak broadening. Evaluations at different noise levels 

and rotor speeds can also be found in the SI, Figures S17 – S25.

In the following section the reasons for peak broadening and peak splitting in the 2DSA-MC 

and CG-MC will be discussed. Since many more species are contained within the 

sedimentation data than can ever be resolved by AUC, a high resolution model covering the 

entire parameter space introduces significant degeneracy in the solution. This problem is 

accentuated further by higher noise levels. One approach to address this challenge is to 

stabilize the solution by TR, which smoothens distributions by damping large fluctuations in 

the amplitudes of the identified solutes. Nevertheless, in cases where broad distributions are 

expected, regularization is a valid approach to improve the analysis interpretation. The price 

to be paid for regularization is a reduction in resolution (see results of the c(s, D), Figures 

S10 – S15). The proper balance between regularization and resolution is given by the L-

curve criterion, available in the PCSA implementation of UltraScan.11

In summary, we found that the 2DSA-(CG)-MC performs well for discrete species or narrow 

distributions. However, without regularization it is not the ideal method for broad PSDs 

where degeneracy of the solution space fails to reliably recover information of 

heterogeneity, especially in noisy data. For example, regularization was applied during the 

c(s, D) analyses. However, it was shown that regularization reduced resolution to a level 

where it was too low to analyze polydisperse PSDs in a meaningful way (Figures S13 – 

S15).

4.1.3 Performance of new parameterizations for PCSA

Introduction to PCSA: Since c(s, D) lacked resolution and accuracy, and 2DSA-MC/CG-

MC proved to be particularly sensitive to stochastic noise contained in the data due to 

degeneracy issues when analyzing polydisperse core-shell systems, a new core-shell 

parameterization for the PCSA was tested next. The idea behind this approach is to restrict 

any combination of s and  to a parametric curve in the parameter space when fitting 

linear combinations of Lamm equation solutions. For core-shell NPs this is a valid 

assumption since every  can be exclusively assigned to a single s (see Figure 1), and a 

smooth variation of  as a function of s is a reasonable expectation. This significantly 

reduces the degeneracy encountered in the 2DSA-MC and CG-MC, by reducing the number 

of possible s-  combinations by a factor of 100 (assuming a 100×100 grid for 2DSA 

and 100 grid points for PCSA). In turn, this automatically constrains the analysis to well 

determined s-  pairs without the necessity of performing regularization in the 2D-space. 

Of course, regularization can still be used to regularize the distribution in the reduced 2D 

space where a fixed correlation of s and  exists. Alternatively, Monte Carlo analysis can 

be applied, which guarantees statistical detail without unnecessarily broadening the 

distribution through regularization.

The best regularization parameters of the 2nd order power law are chosen by the lowest 

RMSD curve obtained by parameter variation in the 2D space. An optional nonlinear least 

squares fit by Levenberg Marquardt can further be applied to optimize the curve parameters. 
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Importantly, also non-constant shell thicknesses are covered by this procedure as long as it 

can be described by a 2nd order power law parameterization (e.g., continuously increasing or 

decreasing shell thickness with increasing core diameter). A theoretical example for such a 

case is given later in this manuscript.

PCSA-TR results for models #1 – #3: The results of the PCSA-TR performed on the same 

datasets as CG-MC can be found in Figure 4c, d (see Figures S17 – S25 for further results). 

An excellent agreement for s and  could be found. The non-continuous property of the 

distribution in the pseudo 3D plot is caused by the finite number of solutes in the grid used 

in the analysis. As shown in Figure 4, the s and  found by the PCSA-TR fit were in 

excellent agreement with the simulated data despite the simulated noise in the experimental 

data and a suboptimal rotor speed. Table 2 summarizes the s and  for the individual 

species obtained for models #1 – #3 by the PCSA-TR. For model #1 the correct s and 

could be retrieved for all rotor speeds and levels of random noise. The maximum error for s 
was 0.08 % and the maximum error for  was 0.62 %. For model #2 the influence of 

rotor speed and noise became more decisive due to the broad PSD. For the lowest rotor 

speed the s of the smallest species showed more deviation. The maximum error was 50.85 % 

(species #1, lowest rotor speed and highest level of random noise). The same holds true for 

, whose determination was compromised in the highest rotor speed and largest level of 

random noise. The maximum error was 15.54 % (species #2, highest rotor speed and level of 

random noise). Here the spread of the sedimentation boundary could no longer be attributed 

exclusively to the particle size, nor could the effect of diffusion be resolved. The effect of 

random noise and rotor speed on the accuracy of the PCSA-TR was further examined for 

model #3. Figure 5 illustrates the best fit parameterizations as found by PCSA-TR. The 

parameterizations are in very good agreement to the original simulation, with the only 

exceptions being found at the highest rotor speed (maximum error for  was 21.61 %). 

This is to be expected as insufficient diffusion information was available at the highest rotor 

speed. Hence, the same behaviour was obtained as for model #2.

PCSA-TR results for models of varying shell thickness: Finally, model #4 was analyzed 

which is similar to model #3 but contains a shell of varying thickness. For the investigation 

of varying shell thicknesses it is crucial that the actual s-  dependency can be covered 

with sufficient accuracy by the 2nd order power law. Otherwise, any deviations in the 

parameterization due to improper fits will be misinterpreted as variations in shell 

thicknesses. Therefore, we first confirmed that the provided s-  dependency can be 

sufficiently described by the parameterization. The size dependent shell thickness obtained 

from the PCSA is shown in Figure 6.

A good agreement with the simulated data was obtained for species #1 – #3, demonstrating 

that the PCSA-TR together with a 2nd order power law is in principle also well suited for the 

analysis of varying shell thicknesses. The negligible increase of the shell thickness at a core 

diameter of about 1 nm can be attributed to the slight imperfection of the parameterization. 

For the largest species in the distribution (#4), the deviation from the original simulations 

became larger as the shell thickness was underestimated. This can be explained by the fact 

that insufficient diffusion information was available from the larger species at the given rotor 
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speed of 20 krpm. Hence, an incorrect parameterization was chosen during the PCSA 

resulting in underestimated shell thicknesses.

In summary, continuous variation of the shell thickness is in principle accessible by PCSA. 

However, the experimental design must assure that the diffusion signal from all NPs is well-

represented. In the given example, this was not the case for species #4. Especially for 

heterogeneous mixtures this can be most readily achieved by performing multiple 

experiments at different rotor speeds with subsequent global analysis. In such experiments 

the size separation is emphasized by high rotor speed experiments, while diffusion signal is 

optimized in experiments with lower rotor speed.

Summary of PCSA: In summary, these results, together with the additional figures for the 

PCSA-TR shown in S12–20, revealed that the PCSA-TR with the 2nd order power law 

parameterization excels at a wide range of noise levels and rotor speeds where currently 

existing analyses fail to produce satisfactory results. Nevertheless, the level of random noise 

should not be too high (< 2 %) and the applied rotor speed should be reasonable for the 

investigated PSD to obtain accurate results for s and . These requirements fall well 

within the capabilities of AUC instruments available today.

It must be pointed out that the parameters determined by the 2nd order power law 

parameterization found by the PCSA-TR are only meaningful in the range where analytes 

have been found. As an example, numerous functions can be found for a monodisperse 

species. In turn, the broader the s- and -range, the higher the confidence in the 

parameterization function will be. For broad distributions the diffusion information will have 

the strongest signal for smaller species. Since the slope of the parameterization function is 

highest in the lower s-range, any variations of the parameters in the 2nd order power law will 

also be much more sensitive here. In contrast, higher s will have only little effect on the best 

function found via the PCSA. The most important value here is the intercept of the function, 

assuming that sufficient diffusion signal is available from the data. Hence, for broad PSDs, s 
and  for large NPs will also fit much better compared to a CG-MC as peak splitting is 

prevented during the PCSA-TR. In contrast, the large species will follow the 

parameterization curve obtained for the majority of smaller NPs. For systems with constant 

shell thickness this will provide much more reliable information on the large structures in 

mixtures than with other methods like c(s, D) or 2DSA-MC and CG-MC.

For systems where such assumptions on the shell-morphology cannot be asserted or where 

insufficient diffusion information is available in the data, global analysis at different rotor 

speeds is recommended. This is available in the supercomputer implementation and is 

subject of ongoing research for the PCSA. Moreover, a logarithmic scaling of s will also 

improve the resolution in the lower s-range and could be implemented in future versions of 

the PCSA-TR. Another possibility could be a discretization schema that matches grid 

spacings adaptively to the information content of different grid regions.

So far we have shown that the PCSA-TR, in combination with a 2nd order power law, 

provides excellent results for simulated sedimentation data of spherical core-shell systems. It 

is a very robust approach, which was found to work for a very broad range of noise levels 
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and rotor speeds. The exact limitations strongly depend on the sample itself as well as the 

experimental parameters and can therefore only be specified in general terms. However, the 

RMSDs of the individual parameterizations offer a good indication for the validity of an 

analysis. Therefore, the RMSD of the best fit model should be sufficiently different from 

RMSDs of the other parameterizations to ensure a well-defined parameterization. However, 

what “sufficient” actually means will depend to a large extent on the signal-to-noise ratio of 

the data.

A summary of the capabilities of the different algorithms with respect to the analysis of the 

simulated data is provided in Table 3. In conclusion, PCSA-TR in combination with a 2nd 

order power law is far superior to the c(s) and c(s, D) analysis or 2DSA-MC/CG-MC in case 

of polydisperse core-shell NPs because it provides high resolution as well as the correct 

hydrodynamic parameters.

4.2 ZnO NPs

In the next step, experimental datasets of ZnO QDs ripened for 3 h and 4 h were 

investigated. Spherical shape was carefully proven by image analysis in the TEM prior to 

this study.34 Moreover, small-angle X-ray (SAXS) and small-angle neutron scattering 

(SANS) studies conducted in cooperation with the Chair for Crystallography and Structural 

Physics at FAU also showed that scattering data for ZnO colloids can only be well fitted 

when assuming polydisperse spherical NPs.17, 35 In contrast, data could not be fitted when 

using models for shape anisotropic NPs.

The ZnO NPs contain an organic acetate shell and have ethanol molecules attached to the 

ZnO core. This results in a size dependency of . The  value is expected to range 

between the values of the pure core (0.1783 cm3/g) and shell (1.2533 cm3/g and 0.9524 

cm3/g for pure ethanol and pure acetic acid, respectively). First, a CG-MC was performed to 

remove the time and radius invariant noise from the data and to fit the actual meniscus 

position. The results of the evaluations including MC analyses can be found in Figure 7. As 

expected, heavy peak broadening and splitting were present due to the polydisperse nature of 

the PSDs. However, the random noise levels were excellent (0.00261 OD and 0.00282 OD 

for the 3 h and 4 h samples, respectively). While reliable information on s can be obtained, 

information on  is not useful due to observed peak splitting. Therefore, a PCSA-TR 

with the new parameterization was performed in the next step.

The PCSA-TR using 2nd order power law parameterization (Eqn. 6) has been found to have 

almost identical RMSD values (0.00260 OD and 0.00289 OD for the 3 h and 4 h samples, 

respectively) compared to the CG-MC. The PCSA-TR provided a constrained correlation for 

s and  as shown in Figure 7. This is very near the weight average of the observed 

signals from the CG-MC, and eliminated the peak splitting. Based on the derived s and 

values, the shell thicknesses were calculated according to the procedure presented previously 

(see Table 4 for further information).17 The simulation in model #4 showed that a size-

dependent shell thickness is difficult to extract from single speed experiments. Therefore, we 

restrict our analyses to the calculation of the weight average thickness. The experimental 

determination of varying shell thickness will be pursued in future work. Such work would 
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require further developments in data evaluation in combination with strong orthogonal 

techniques for comparison.

The shell thickness was found to vary between 0.60 nm and 0.67 nm, depending on the 

sample and the shell density assumed for calculation. It is expected that the true shell 

thickness is in between these two values as it will consist of ethanol and acetate molecules. 

However, the variation of less than 1 Å confirms the excellent reproducibility and robustness 

of the PCSA-TR. These results on the shell morphology are further in good agreement with 

the known length of an acetate molecule bound to a ZnO QD (0.49 nm).36 A slightly larger 

hydrodynamic diameter is to be expected due to an ethanol solvation layer formed around 

the NP surface. A combined SANS/SAXS study revealed slightly larger shell thicknesses 

reaching from 0.7 nm to 1.3 nm.35 In contrast to AUC, the shell thickness provided by 

SANS/SAXS is not derived from the hydrodynamic properties of the NP but it describes the 

native stabilizing layer of the NPs and how far it extends into the dispersion medium. Thus, 

also acetate molecules exceeding the shear plane of the NP are considered by SANS/SAXS, 

which is the reason why slightly larger values in case of scattering methods are clearly 

expected.

4.3 CuInS2 NPs

CuInS2 NPs prepared via batch synthesis were used to obtain additional experimental 

evidence to test the capabilities of the new methodology. Spherical shape of these NPs was 

previously demonstrated by image analysis using TEM.22, 23 In contrast to ZnO, these NPs 

have a thicker organic shell of about 1 nm.22 In our previous work, resolution with respect to 

the simultaneous determination of size and effective density was severely limited because 

the c(s, D) analysis was employed.22 c(s) analysis was further used to determine the PSD but 

this approach incurred drawbacks due to the assumption of a constant effective NP density. 

Here we performed a PCSA-TR using 2nd order power law parameterization to further 

investigate the structure of those semiconductor NPs. The results are shown in Figure 8 and 

Table 4.

As can be seen in Figure 8, the s distribution covered a range from about 3 S to 12 S, while 

 deviated significantly from the value expected for the pure core material (0.211 

cm3/g). This suggests a significant contribution from a thick shell as was already confirmed 

by TGA results previously.23 Next, the shell thickness was calculated using the  of the 

organic ligand (1.186 cm3/g), which is almost identical to the  of the solvent (1.160 cm3/g). 

A value of 1.08 nm was obtained. The value for the shell thickness is in very good 

agreement with our previous c(s, D) analysis of such NPs prepared in batch synthesis 

(deviation is less than 1 Å).22 However, in contrast to recent analyses, a high resolution 

sedimentation coefficient distribution is available together with information about the shell 

thickness. Moreover, MWL analysis is in principle now also accessible for such core-shell 

NPs.

Conclusions

In this work, the capabilities of modern algorithms for the evaluation of sedimentation data 

from polydisperse PSDs were investigated. Previous work clearly revealed that the analysis 
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of most NPs having a comparably broad PSD and consisting of a core-shell structure has not 

been sufficiently addressed so far. For example, 1D analysis fails to provide information on 

the core-shell properties of NPs. Moreover, this type of analysis can result in false positives 

routinely found by the c(s) analysis because frictional heterogeneity cannot be addressed by 

c(s). A comparison of current 2D analysis revealed that the c(s, D) analysis is more robust 

against random noise and high rotor speeds, but resolution is very low due to excessive 

smoothening of the distributions by regularization. Hence, only weight averaged information 

is provided in the case of broad PSDs. Moreover, the possibility of high performance 

computing is not available, which makes Sedfit unsuitable for large datasets produced by the 

recently described MWL detector.

The 2DSA-MC and CG-MC provide unrivaled resolution and accuracy but fail to analyze 

broad PSDs because peak broadening and splitting can occur in the 2nd dimension. This 

compromises the determination of effective partial specific volumes and hence core-shell 

parameters. Thus, present analysis methods show either a lack of information on the hybrid 

composition or the resolution is too low to determine the core-shell composition.

In contrast, PCSA in combination with a 2nd order power law parameterization developed in 

this work provides high resolution and unrivaled information on the core-shell properties of 

NPs in polydisperse PSDs. Our simulations showed that it performs well for a wide range of 

stochastic noise levels, rotor speeds and different PSDs. After validating our method with 

simulated data, we applied it to experimental systems of ZnO and CuInS2 NPs. For the first 

time, the core-shell properties of polydisperse quantum dots could be addressed with high 

resolution and reliability by means of 2D-AUC.

We believe that these developments will significantly expand the application of AUC 

because 2D analysis is no longer limited to narrow PSDs. Recently, it was demonstrated that 

MWL-AUC in combination with 2DSA can be used to determine the spectral properties and 

sizes of multiple but discrete quantum dot species.37 Further studies shall be focused on 

MWL analysis to derive the size dependent extinction spectra for all species in polydisperse 

PSDs. AUC together with PCSA will then allow studying the quantum size effect for 

continuous distributions of semiconductor NPs.

The 2nd order power law parameterization in PCSA is available for free download in 

UltraScan3 via http://www.ultrascan3.uthscsa.edu/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Change of the effective partial specific volume as a function of the sedimentation coefficient 

for NPs consisting of a constant shell thickness (0.235 nm) and core with varying diameter. 

In this simulation the core diameter was varied between 1 nm and 20 nm. The density of 

ZnO (5.61 g/cm3) was used for the core and the density of acetic acid (1.05 g/cm3) was used 

for the acetate ligand of the shell. Further contributions of solvation to the shell thickness 

and effective density were not considered for this simulation.
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Figure 2. 
Representative set of model lines used for the PCSA generated with the 2nd order power law 

parameterization and a variation count K of 3.
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Figure 3. 
Sedimentation coefficient distribution as obtained by the c(s) analysis for a multimodal 

polydisperse PSD (model #3) simulated at different noise levels and rotor speeds. For other 

models see Figure S9.
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Figure 4. 
Simulation model #1 for narrow PSDs (a – c) and simulation model #3 for polydisperse (d – 

f) PSDs together with 2D evaluations using CG-MC (b, e) and the PCSA-TR with a 2nd 

order power law parameterization (c, f). Model #1 has been simulated with a random noise 

level of 2 % and a rotor speed of 40 krpm (a – c). Model #3 has been simulated with a 

random noise level of 0.5 % and a rotor speed of 20 krpm (d – f). Higher concentration is 

indicated by a more reddish color.
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Figure 5. 
Dependency of s and  as provided by model #3 and the best fit parameterizations for 

the different rotor speeds and levels of random noise as obtained by the PCSA. 

Sedimentation coefficient ranges of the species are indicated by arrows.
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Figure 6. 
Size dependent shell thickness obtained by PCSA for model #4 compared to the original 

variation as provided in the simulated data. Core diameter range of species is indicated by 

arrows.
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Figure 7. 
Results of the CG-MC (blue-purple-red) and PCSA-TR (green-blue-red) of ZnO NPs 

ripened in a batch synthesis for 3 h (top) and 4 h (down) at 35 °C. Evaluation was performed 

for SV-data at 270 nm.
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Figure 8. 
Results of the CG-MC (blue-purple-red) and PCSA-TR (green-blue-red) of CuInS2 NPs 

ripened in a batch synthesis for 1 h. The RMSD values were 0.00871 OD and 0.00880 OD 

for the CG-MC and PCSA-TR, respectively. Evaluation was performed for SV-data at 350 

nm.
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Table 3

Capabilities of different algorithms to correctly reproduce simulated PSDs in terms of s and .

model # c(s)a c(s, D) CG-MC PCSA

1 ✘ ✓ ✓ ✓

2 ✘ ✓/✘b ✓ ✓d

3 ✘ ✘ ✓/✘c ✓d

4 ✘ ✘ ✘ ✓e

a
No information on  provided but s correctly reproduced for narrow PSDs or high rotor speeds.

b
Resolution severely limited dependent upon noise level and rotor speed.

c
Significant peak broadening and splitting occurring for higher RMSD and rotor speed only allows to derive mean parameters for single species.

d
Larger deviations for large random noise levels and rotor speeds.

e
Varying shell thickness accessible under certain restrictions.
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Table 4

PCSA-TR results as obtained for ZnO and CuInS2 NPs.

sample s20,w/S
/cm3/g

ρp,eff/g/cm3 dshell/nm

ZnO 3 h 35.34 0.323 3.10 0.60a/0.65b

ZnO 4 h 39.88 0.320 3.13 0.62a/0.67b

CuInS2 5.83 0.680 1.47 1.08

a
Calculated assuming a density of pure ethanol for the shell.

b
Calculated assuming a density of pure acetic acid (representing acetate) for the shell.
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