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Abstract
Analytical ultracentrifugation (AUC) has emerged as a robust and reliable technique for biomolecular characterization with 
extraordinary sensitivity. AUC is widely used to study purity, conformational changes, biomolecular interactions, and stoi-
chiometry. Furthermore, AUC is used to determine the molecular weight of biomolecules such as proteins, carbohydrates, 
and DNA and RNA. Due to the multifaceted role(s) of non-coding RNAs from viruses, prokaryotes, and eukaryotes, research 
aimed at understanding the structure–function relationships of non-coding RNAs is rapidly increasing. However, due to 
their large size, flexibility, complicated secondary structures, and conformations, structural studies of non-coding RNAs 
are challenging. In this review, we are summarizing the application of AUC to evaluate the homogeneity, interactions, and 
conformational changes of non-coding RNAs from adenovirus as well as from Murray Valley, Powassan, and West Nile 
viruses. We also discuss the application of AUC to characterize eukaryotic long non-coding RNAs, Xist, and HOTAIR. 
These examples highlight the significant role AUC can play in facilitating the structural determination of non-coding RNAs 
and their complexes.

Keywords  Aggregation · Analytical ultracentrifuge · Flaviviral RNAs · Homogeneity · Long non-coding RNAs · 
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Introduction to analytical ultracentrifuge

The development of the analytical ultracentrifuge (AUC) 
by Svedberg and colleagues in the 1920s revolutionized the 
characterization of biomolecules in solution (Svedberg and 
Pedersen 1940). In an AUC experiment, the preparation 

of biomolecules is subjected to high centrifugal force to 
accelerate their sedimentation governed by hydrodynamic 
principles, size and shape (Lebowitz et al. 2002; Mitra and 
Demeler 2020; Patel et al. 2016). The sedimentation of bio-
molecules is typically monitored by either exploiting the 
optical absorption of biomolecules at characteristic wave-
lengths or by Rayleigh interference (refractometric) opti-
cal systems (Crepeau et al. 1972; Harding and Rowe 1988). 
More recently, advances with fluorescence and multi-wave-
length detection have proven to be another valuable alterna-
tive (Crepeau et al. 1972; Harding and Rowe 1988; Johnson 
et al. 2018; MacGregor et al. 2004; Wawra et al. 2019). AUC 
has emerged as an indispensable technique to investigate the 
shape, size, homogeneity, oligomeric state, and aggregation 
of biomolecules and macromolecular complexes, in solu-
tion with a minuscule amount of sample (~ 150–400 µL) 
(Liu et al. 2015; May et al. 2014; Schuck 2013; Wolff et al. 
2015; Zhang et al. 2017a). There are numerous examples 
where AUC was used to study the conformations (initial, 
intermediate, and final) and ligand-induced changes of a 
biomolecule of interest (Brautigam et al. 2009; Dean et al. 
2019; Matte et al. 2012; Mitra and Demeler 2020; Unzai 
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2018). AUC has also been used to study RNAs, and this 
review sheds light on employing AUC for biophysical char-
acterization of RNA and RNA structure.

AUC experiments are categorized into two modes: sedi-
mentation velocity (SV) and sedimentation equilibrium 
(SE). SV studies the evolution of the sedimentation pro-
cess, whereas SE examines the final equilibrium distribu-
tion. Both SV and SE are complementary methods; both 
together provide an extensive characterization of mass, size, 
density, hydrodynamic shape, size distribution, purity, weak 
and reversible interactions, and the formation of multi-com-
ponent complexes (Harding and Winzor 2001; Zhao et al. 
2013). Under the SV mode, samples are spun at high angular 
velocity resulting in faster sedimentation of biomolecules. 
Using the bulk solute boundary, one can estimate the rate of 
sedimentation, which can be further exploited to calculate 
size, shape, and conformational homogeneity of the biomol-
ecules under investigation.

On the other hand, during the SE experiment, the parti-
cles are spun at a slower speed compared to SV, to achieve 
a balance between the outward flux (flow due to sedimenta-
tion) and inward flux (flow due to diffusion). During the SE 
experiment, biomolecules are subjected to high diffusion 
forces, which result in increased buoyancy of the particles. 
This phenomenon helps us distinguish the molecules based 
on their stoichiometry and average molecular weight (Hard-
ing 1994; Rowe 2013). AUC data are collected by monitor-
ing solute migration in case of SV-AUC, whereas in case of 
SE-AUC solute distribution is monitored; these data are then 
analyzed with mathematical relations that help us determine 
the stoichiometry, molecular weight, as well as other bio-
physical parameters. These mathematical steps have been 
explained at length elsewhere (Cole et al. 2008; Dam and 
Schuck 2004; Harding and Winzor 2001; Mitra 2009; Mitra 
and Demeler 2020; Patel et al. 2016).

Sophisticated programs have been developed which can 
reliably determine the sedimentation coefficient (s), as well 
as other hydrodynamic parameters for a biomolecular sys-
tem of interest. Some of the routinely employed software 
packages include UltraScan-III (Brookes et al. 2010; Deme-
ler and Gorbet 2016), SEDANAL (Sherwood and Stafford 
2016), SEDFIT (Dam and Schuck 2004; Schuck 1998), 
and SVEDBERG (Philo 1997). There are many excellent 
reviews available on AUC methods, instrumentation, and 
data analysis, and readers should refer them for additional 
information (Arakawa and Philo 1999; Brautigam 2011; 
Cole and Hansen 1999; Cole et al. 2008; Fujita 1975; Gillis 
et al. 2014; Gorbet et al. 2018; Harding 1994; Harding et al. 
2015; Harding and Winzor 2001; Laue and Stafford III 1999; 
Lebowitz et al. 2002; Liu et al. 2015; Patel et al. 2017b; 
Patel et al. 2016; Perkins et al. 2011; Planken and Colfen 
2010; Schuck 2013; Schuster and Toedt 1996; Uchiyama 
et al. 2018; Unzai 2018; Yang et al. 2015). In this review, 

we will focus on the application of AUC in studying non-
coding RNAs.

Non‑coding RNA: structures and challenges

Ribonucleic acid (RNA) is a biopolymer that forms an 
intermediary in gene expression and is responsible for the 
translation of genetic material—DNA to functional pro-
teins. RNA is also one of the most important biopolymers 
performing various critical cellular roles including protein 
synthesis, gene regulation, and nucleic acid processing; the 
latter two processes are carried out by a class of RNA called 
non-coding RNAs (ncRNAs) (Kung et al. 2013; Novikova 
et  al. 2013). ncRNA includes ribosomal RNA, transfer 
RNA, small ncRNA (< 200 nucleotides), and long ncRNA 
(lncRNA, > 200 nucleotides) (Mattick and Makunin 2006). 
LncRNAs are defined as RNA stretches larger than 200 
nucleotides, which are not used as a template for translation 
(Kopp and Mendell 2018; Novikova et al. 2013; Yao et al. 
2019). LncRNAs are further divided into mRNA-like inter-
genic transcripts (lincRNAs), natural antisense transcripts 
(NATs), MALAT1-associated small cytoplasmic RNA 
(mascRNAs), SnoRNA-ended lncRNAs (sno-lncRNAs), or 
covalently closed circular structures (ciRNAs and circRNA) 
(Kopp and Mendell 2018; St Laurent et al. 2015; Yao et al. 
2019).

lncRNAs are implicated in a multitude of processes rang-
ing from embryonic stem cell pluripotency, hematopoiesis, 
and cell-cycle regulation. They are also involved in numer-
ous diseases such as cancer and cardiovascular pathologies 
(Alvarez-Dominguez and Lodish 2017; Batista and Chang 
2013; Bhan et al. 2017; Chen 2016; Chen et al. 2018; Elling 
et al. 2016; Fico et al. 2019; Liu et al. 2018; Rinn and Chang 
2012; Sallam et al. 2018; Sarropoulos et al. 2019; Schmitz 
et al. 2016; Uchida and Dimmeler 2015; Yao et al. 2019; 
Zhang et al. 2017b). Recent studies suggest that exosomal 
lncRNAs are a novel mediator of cell-to-cell communica-
tion, and have essential roles in the tumor microenviron-
ment, metastasis, invasion, chemoresistance (Patel et al. 
2017a; Yousefi et al. 2020). LncRNAs are also emerging as 
biomarkers in various clinical implications, particularly in 
cancer prognosis (Bhan et al. 2017; Bolha et al. 2017; Carle-
varo-Fita et al. 2020; Flynn and Chang 2014; Hu et al. 2012). 
One of the common themes amongst all these processes is 
that lncRNAs drive the formation of ribonucleic–protein 
complexes, which in turn, influence the regulation of gene 
expression (Rinn and Chang 2012; Zampetaki et al. 2018). 
This seemingly simple function is performed by three meth-
ods: (1) decoys—lncRNA can serve as decoys that prelude 
the access of regulatory proteins to DNA, (2) scaffold—
lncRNAs serve as an adaptor bringing two or more proteins 
together to performs a specific function, (3) guides—these 
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lncRNAs are prerequisite for localization of distinct protein 
complexes (Rinn and Chang 2012). Their primary structure 
determines these functional properties of RNA. However, 
RNA is also capable of adopting complex secondary and 
tertiary structure (Blythe et al. 2016; Johnsson et al. 2014; 
Kim et al. 2020; Mercer and Mattick 2013; Somarowthu 
et al. 2015; Zampetaki et al. 2018). Furthermore, such com-
plexity in the structure of lncRNA is higher than that of 
mRNA, bestowing lncRNA with higher stability, as well as 
an enhanced capability to bind to proteins and other nucleic 
acids to undertake gene regulatory functions (Blythe et al. 
2016; Clark et al. 2012; Fernandes et al. 2019; Novikova 
et al. 2013; Wan et al. 2012).

Similar to eukaryotic ncRNAs, other organisms such as 
bacteria and viruses also contain ncRNAs that play critical 
roles in their life cycle. For example, Flaviviruses, a group 
of positive-sense, single-stranded RNA viruses (includes 
Dengue, Japanese encephalitis, Murray Valley encephalitis 
(MVEV), Powassan (PowV), West Nile, hepatitis C, and 
Zika viruses) contain 5′ and 3′ non-coding terminal regions 
(TR). Several studies have highlighted the critical role of 
these TRs in viral replication. These terminal regions are 
intolerable to mutations, often causing lethality or a sig-
nificant reduction in viral replication (Brinton 2013), and 
interact with many host proteins required for replication 
(Ariumi 2014; Brinton 2013; Brinton and Basu 2015; Brin-
ton et al. 1986; Fernández-Sanlés et al. 2017; Li et al. 2013; 
Tingting et al. 2006). Furthermore, the TRs are also crucial 
for genome cyclization where the 5′ TR interacts with the 3′ 
TR to facilitate proper positioning of the viral NS5 RNA-
dependent RNA polymerase (Alvarez et al. 2005; Duan et al. 
2019; Filomatori et al. 2006; Villordo et al. 2015). In the 
case of cells infected with Japanese encephalitis virus, it 
was found that subgenomic flaviviral RNA (sfRNA) acts 
as a switch that shuts down antigenome synthesis and viral 
translation, resulting in the packaging and dissemination 
of mature viral particles from the cells (Fan et al. 2011). 
Another highlighted role of TRs in family Flaviviridae is 
the 5′ TR IRES (internal ribosomal entry site) of Hepatitis 
C virus and other genera like Pegivirus and Pestivirus, which 
mainly mediates cap-independent translation. The HCV 
IRES structure and functions have been extensively stud-
ied (Lukavsky 2009; Perard et al. 2013; Vopalensky et al. 
2018). Critical roles of viral lncRNA are reported in human 
immunodeficiency virus, herpes simplex virus, and influenza 
virus. The effects of viral lncRNA include regulation of host 
immune response, regulation of pathogen proliferation, and 
maintaining viral latency (Shirahama et al. 2020; Wang et al. 
2017).

Despite the variety of roles of ncRNAs, there is a lim-
ited understanding regarding their structure(s), primarily 
due to the length of the molecule(s) enabling multiple 
conformations to exist at once (Blythe et al. 2016; Gopal 

et al. 2012; Novikova et al. 2012; Somarowthu et al. 2015). 
There are two main approaches used to probe the second-
ary structure of lncRNA, each with its benefits and limita-
tions (Blythe et al. 2016). The first is to predict lncRNA 
secondary structures using thermodynamic models, which 
incorporate experimentally determined base-pairing ener-
gies. This is a quick method; however, as the length of 
RNA increases, the determination of secondary structures 
becomes challenging, as such methods cannot account for 
long-range interactions. The second approach is to use bio-
chemical techniques such as selective 2′ hydroxyl acyla-
tion analyzed by primer extension (SHAPE) (Deigan et al. 
2009; Merino et al. 2005), where non-base-pairing nucle-
otides are chemically modified, and the entire modified 
RNA is subjected to sequencing. The resultant sequencing 
readout helps in distinguishing paired nucleotides from 
unpaired nucleotides. SHAPE allows reliable determi-
nation of secondary structure, but it is labor-, time-, and 
cost-intensive. Readers should refer to (Blythe et al. 2016; 
Loughrey et al. 2014; Merino et al. 2005; Smola et al. 
2015) for details of SHAPE approaches. Furthermore, it is 
important to mention that unlike sncRNA, it is ultimately 
the shape and not the sequence which governs the function 
of lncRNA, as observed in case of protein secondary vs. 
tertiary structure. Thus, by merely using mutational and 
sequencing methods, one cannot understand the role of 
lncRNA (Zampetaki et al. 2018).

To determine the three-dimensional structure of lncR-
NAs, techniques such as X-ray crystallography, nuclear 
magnetic resonance, solution X-ray scattering (SAXS), and 
cryo-electron microscopy can be employed. These tech-
niques are capable of providing a direct representation of the 
three-dimensional structure of lncRNA. However, a common 
pitfall for all these techniques is the difficulty in the produc-
tion of highly purified lncRNAs and maintaining sample 
integrity. Another challenge is that lncRNAs are susceptible 
to degradation. Multiple conformations, degraded products, 
and aggregation can negatively impact data collection and 
analysis. Therefore, a reliable method is required to charac-
terize the lncRNAs in solution without altering or destroy-
ing the samples. AUC offers several advantages over other 
methods to study the purity and conformations of lncRNAs. 
For example, the purity, aggregation, oligomerization, and 
conformational changes of lncRNAs can be studied over a 
range of concentrations, temperatures, and buffer conditions. 
AUC requires a minuscule amount of sample as compared to 
crystallography and other biophysical techniques, and with 
the advanced sensitive detectors, even minute amounts of 
aggregation and/or degradation can be accurately detected. 
This review highlights and discusses the various examples 
where AUC has been employed to evaluate the purity, homo-
geneity, binding and hydrodynamic properties of lncRNA 
in solution.
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Non‑coding RNA characterization using AUC​

Characterization of flaviviral RNAs

As summarized previously, Flaviviral ncRNAs inter-
act with host proteins and are critical for viral life cycle 
(Meier-Stephenson et al. 2018; Shah et al. 2018). There-
fore, it is essential to study their structure and interactions 
with host proteins. However, as mentioned above, there 
are many challenges associated with studying ncRNA 
structures, including the degradation of ncRNAs, multi-
ple conformations, and potential aggregation. Therefore, 
a thorough quality control analysis of ncRNAs is essential 
prior to structural studies. AUC has emerged as a reli-
able tool to evaluate purity, aggregation, and degradation 
simultaneously.

The first example of the application of AUC is a study 
by Mrozowich et al. (2020). The authors were interested 
in studying the structures of MVEV and PowV non-cod-
ing TRs using SAXS and computational modeling. Using 
SAXS, it is possible to derive a low-resolution molecular 
envelopes of biomolecules (Mrozowich et al. 2018; Patel 
et al. 2017b). However, since the quality of low-resolution 
envelops can be affected by the presence of degraded and/
or oligomeric species, it was paramount that the quality of 
RNAs was evaluated accurately. The 5′ and 3′ non-coding 
TRs were first in vitro transcribed using T7 RNA polymer-
ase, and initial quality assessment steps were performed 
using urea-PAGE. The urea-PAGE analysis indicated that 

the MVEV 5′ TR had minor degradation, whereas the 
three other RNAs were pure, as judged by a single band. 
However, denaturing urea-PAGEs are unable to assess the 
conformational or oligomeric state of RNAs. Therefore, 
AUC was selected, as it has emerged as a very reliable 
quality control method.

The AUC-SV data for the size exclusion chromatogra-
phy (SEC) purified RNAs were collected using a Beckman 
Optima AUC centrifuge, and an AN50-Ti rotor at 20 °C at 
35,000 rpm. Data were processed using the UltraScan-III 
package (Demeler and Gorbet 2016), which utilized two-
dimensional spectrum analysis, van Holde-Weischet, and 
genetic algorithm analyses. (Brookes et al. 2010; Brookes 
and Demeler 2007; Demeler and van Holde 2004). The 
AUC-SV results for all four RNAs are summarized in 
Fig. 1. The sedimentation coefficient distribution indi-
cates that all four RNAs are mainly monodispersed, with 
MVEV 5′ TR showing minor degradation, supporting the 
urea-PAGE analysis. Sedimentation coefficient (s) values 
of 4.27 S and 4.30 S were obtained for MVEV 5′ TR and 
3′ TR, respectively (Fig. 1a). The AUV-SV analysis for 
PowV 5′ and 3′ TRs resulted in s-values of 4.49 S and 
4.53 S, respectively (Fig. 1b). All four RNAs also dis-
played peaks at ~ 5.5 S, indicating the presence of oligo-
meric states in solution. The authors have suggested that 
this oligomerization could be the result of RNA adopting 
multiple conformations, which is also suggested by their 
predicted secondary structures. The AUC-SV analysis also 
demonstrated that PowV TRs, with a molecular weight 
(Mw) of ~ 38 kDa, have a marginally higher sedimentation 

Fig. 1   Solution characterization of in vitro transcribed 5′ and 3′ ter-
minal regions (TRs) of MVEV and PowV RNA. a Sedimentation 
coefficient distribution profiles of MVEV non-coding TRs. b Sedi-
mentation coefficient distribution profiles for PowV non-coding TRs. 

Sedimentation velocity-analytical ultracentrifugation (SV-AUC) The 
SV peaks at ~ 4.5 S for each RNA represent monomeric fractions. 
The sedimentation coefficient values are corrected to standard solvent 
conditions (20 C in water)
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coefficient compared to the MVEV TRs with a Mw 
of ~ 32 kDa. This indicates that these viral TR RNAs have 
more extended conformations in solution. The detectable 
difference in s-values of the RNAs with a mere difference 
of 6 kDa highlights that using sedimentation profiles to 
characterize RNA is more accurate and can better repre-
sent their size and shape. Overall, these experiments sug-
gested that all four RNAs are of suitable purity to perform 
HPLC-SAXS, but it would be highly inadvisable to per-
form any SAXS without the use of HPLC to remove minor 
impurities during data collection.

Another hydrodynamic analysis of a ncRNAs probing 
a protein–RNA interaction is the recent multi-wavelength 
AUC (MWL-AUC) study by Zhang et al. (2017a). They 
studied the hydrodynamics of the 75 nucleotides negative 
sense 3′ stem-loop RNA of the West Nile virus (WNV) and 
its affinity with the human T cell-restricted intracellular anti-
gen-1-related protein (hTIAR). In this study, the authors col-
lected MWL-AUC data in the spectral range of 236–294 nm, 
with 1 nm increment, followed by spectral deconvolution 
to identify the specific absorption spectra provided by 
WNV RNA and hTIAR protein components. This approach 
allowed the assessment of the homogeneity of individual 
components, as well as the stoichiometric ratios of hTIAR 
and WNV RNA. The purity of hTIAR and WNV RNA was 
studied using AUC, followed by an analysis of the mixture of 
WNV RNA and hTIAR at various ratios (3:1, 6:1, and 10:1 
protein: RNA). The MWL-AUC data were analyzed using 
UltraScan-III (Brookes et al. 2010; Brookes and Demeler 
2007). First, two-dimensional spectrum analysis was per-
formed to provide an unbiased hydrodynamic model for each 
dataset chosen based on the wavelength scans (Brookes et al. 
2010). The results were then fitted globally using Monte 
Carlo analysis to accurately determine the hydrodynamic 
properties of each analyte (sedimentation and frictional coef-
ficients), as well as the stoichiometry of the reaction (Deme-
ler and Brookes 2008). Overall, this experiment provided a 
stoichiometry of 4:1 for the hTIAR:WNV RNA interaction. 
Furthermore, the s-value and anisotropy analysis of a sample 
containing 10:1 loading ratio of hTIAR:WNV RNA sug-
gested a minor variation in hTIAR anisotropy (1.25–1.75). 
Moreover, when hTIAR interacted with the WNV RNA, as 
expected, the s-values increased, with a minute decrease in 
the anisotropy (1–1.5), suggesting an increased globular 
conformation of the complex, compared to that of hTIAR 
alone. The MWL-AUC analysis also suggested a negligi-
ble conformational change in WNV RNA upon binding 
with hTIAR. Overall, this study presented an application of 
MWL-AUC experiment to investigate stoichiometric ratio, 
anisotropy, and intermediate species of an RNA–protein 
complex. Unlike traditional data collection and analysis, 
application of spectral deconvolution allowed evaluation of 
these parameters simultaneously.

In summary, the above-mentioned examples of viral 
RNAs demonstrate that AUC is undoubtedly an essential 
tool to study ncRNAs homogeneity and interactions.

Characterization of adenovirus virus‑associated 
(VAI) RNA

Viruses employ several mechanisms to recruit host machin-
ery for their entry, gene replication, protein synthesis, and 
maturation. They also utilize their proteins and nucleic 
acids to inhibit the hosts’ defence system aimed at combat-
ing viral infection (Christiaansen et al. 2015; Dzananovic 
et al. 2018). One such example is the ncRNA of adenovi-
rus, VAI, which interacts with the human innate immune 
system protein, and the double-stranded RNA-activated 
protein kinase R (PKR). The innate immune system is our 
first line of defence mechanisms, although non-specific, 
provides protection against a wide range of pathogens. The 
adenovirus employs host RNA polymerase III to synthesize 
high-amounts of VAI RNA (Reich et al. 1966; Soderlund 
et al. 1976). VAI is composed of an apical stem-loop region, 
central stem-loop, terminal stem regions with predominant 
double-stranded RNA structures, and is ~ 159 nts long. It 
interacts with the host protein PKR and blocks its dimeri-
zation. PKR consists of two double-stranded RNA-binding 
domains at the N-terminus and a Ser/Thr kinase domain at 
the C-terminus. In the absence of VAI, the double-stranded 
binding domains of PKR recognizes viral double-stranded 
regions, dimerizes, and auto-trans-phosphorylates the kinase 
domains (Bevilacqua and Cech 1996; Thomis and Samuel 
1993). The auto-trans-phosphorylated PKR, in turn, phos-
phorylates the eukaryotic initiation factor 2, resulting in the 
inhibition of translation initiation in the host cell (Gale and 
Katze 1998). However, many viral proteins and RNAs such 
as VAI target PKR to inhibit its function (Ariyo et al. 2015; 
Dzananovic et al. 2018).

Many groups, including the Cole and McKenna labs, 
have worked on understanding the structural features of VAI 
RNA and its interactions with PKR (Dzananovic et al. 2013, 
2014, 2017; Launer-Felty et al. 2015; Mayo and Cole 2017; 
VanOudenhove et al. 2009; Wong et al. 2011). Their work 
involved in vitro transcription of VAI RNA and its frag-
ments, purification using SEC, and aggregation/degradation 
studies using native, as well as denaturing electrophoresis. 
Most importantly, they used AUC to study the homogene-
ity of SEC-purified VAI RNA in solution. A representa-
tive example shown in Fig. 2 demonstrates that VAI can 
be in vitro transcribed and purified to homogeneity. The 
AUC-SV experiment was performed at 0.2 mg/mL using the 
Beckman Optima XL-I analytical ultracentrifuge (Beckman 
Instruments, USA) at 20.0 °C (Dzananovic et al. 2014), fol-
lowed by data processing using the SEDFIT package (Dam 
and Schuck 2004; Schuck 1998). The AUC-SV experiment 
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suggested that the VAI RNA, with a Mw of 48 kDa, has an 
s value of 5.45 ± 0.10 S. Subsequent AUC studies by the 
Cole group suggested the s value of ~ 5.55 S, which agrees 
with the previous analysis (Launer-Felty et al. 2015). The 
McKenna group also determined the hydrodynamic radius 
of VAI RNA (3.80 ± 0.40 nm) (Dzananovic et al. 2014) and 
combined with the s value to determine the molar mass as 
previously studied (Stetefeld et al. 2016). Their analysis 
provided a molar mass of 54.2 kDa, which agrees reason-
ably well with that of a sequence-based molecular weight 
of 48.2 kDa. Both groups used AUC characterized RNA 
for SAXS studies to gain insights into the low-resolution 
structure of full-length VAI RNA. Their SAXS studies sug-
gested that based on Guinier analysis of SAXS data dem-
onstrated that VAI is monodispersed and is devoid of any 
inter-particle interactions, supporting observations made 
from AUC-SV experiments (Dzananovic et al. 2014; Launer-
Felty et al. 2015). Furthermore, they also demonstrated that 
VAI RNA adapts an extended and curved shape in solution 
with a radius of gyration value of ~ 4.4 nm, and the maxi-
mum particle dimension of 14–16 nm (Dzananovic et al. 
2014; Launer-Felty et al. 2015). In summary, AUC is critical 
in assessing the purity of ncRNA, prior to performing sub-
sequent experiments for structural and interaction studies.

Characterization of lncRNAs Xist and HOX using AUC​

Since lncRNAs are involved in the regulation of various cel-
lular processes such as cell-fate programming, reprogram-
ming, and pluripotency (Carlevaro-Fita et al. 2020; Delas 
et al. 2019; Leisegang et al. 2017; Sarropoulos et al. 2019), 
their alteration leads to developmental defects and cancer 
progression (Flynn and Chang 2014; Hu et al. 2012; Yousefi 
et al. 2020). LncRNAs are also identified as a biomarker for 
different stages of osteoarthritis (Zhao and Xu 2018).

AUC has attenuated the challenges and hurdles for the 
biophysical and structural biology studies of lncRNAs, 

which are dynamic and adopt multiple complex conforma-
tions (Jones and Sattler 2019; Liu et al. 2018; Somarowthu 
et al. 2015). In this section, we provide additional examples 
of another lncRNAs called HOX transcript antisense inter-
genic RNA (HOTAIR) (Liu et al. 2018; Somarowthu et al. 
2015) and mammalian X-inactive specific transcript (Xist) 
studied using AUC-SV experiments (Liu et al. 2017).

HOTAIR is critical for silencing HoxD genes by interact-
ing with chromatin remodeling enzymes (Rinn et al. 2007; 
Sparmann and van Lohuizen 2006). The overexpression 
of lncRNA HOTAIR promotes the metastatic potential of 
tumors by altering the chromatin dynamics (Gupta et al. 
2010). HOTAIR is recognized as a negative prognostic fac-
tor in pancreatic cancer (Kim et al. 2013). To investigate the 
secondary and tertiary structure of HOTAIR, Somarowthu 
et al. (2015) performed quality assessment using AUC-SV. 
The authors reported three different purification methods: 
native, heat cooled, and snap cooled analyzed through 
AUC-SV. Native purification of HOTAIR showed single 
homogenous species; however, preparation of samples by 
heat denaturation and refolding demonstrated inhomoge-
neous species. (Somarowthu et al. 2015) Next, the authors 
performed a series of AUC-SV experiments with increas-
ing MgCl2 concentrations and observed an increase in the 
s-value of HOTAIR and a decrease in UV absorption. They 
demonstrated that an MgCl2 concentration of 25 mM is suf-
ficient to obtain a homogenous preparation of HOTAIR for 
subsequent structural studies (Somarowthu et al. 2015). Fur-
thermore, the authors also derived the hydrodynamic radius 
(RH) of HOTAIR by processing data collected for a series of 
MgCl2 concentrations using SEDFIT. Subsequently, the RH 
derived from the AUC-SV experiment was plotted as a func-
tion of Mg2+ concentration, to which a Hill equation was 
fitted. The fit revealed K1/2Mg of 8.6 ± 0.8 mM Mg2+ con-
centration for lncRNA HOTAIR (Somarowthu et al. 2015).

The 5′ TR of Xist is composed of a unique region called 
RepA. RepA is comprised of 7.5–8.5 copies of a conserved 
26-nt motif (made up of A Repeats), which is connected by 
U-rich linkers. RepA is reported to be involved in transcrip-
tional silencing of the X chromosome (Duszczyk et al. 2011; 
Wutz et al. 2002). Interestingly, RepA also serves alterna-
tive roles as a separate transcript, which is independently 
transcribed of Xist (Wutz et al. 2002; Zhao et al. 2008). 
Using AUC-SV, Liu et al. (2017) studied RepA homogene-
ity and compaction using varying Mg2+ concentrations. A 
series of AUC-SV experiments were performed to monitor 
the extent of molecular compaction of RepA as a function 
of Mg2+ concentration (Liu et al. 2017), followed by data 
analysis using SEDFIT (Schuck 2013). It was observed that 
the s-value of RepA gradually increases as a function of 
Mg2+ concentration. These experiments also demonstrate 
that 15 mM MgCl2 is sufficient to obtain a compact con-
formation and homogenous preparation of RepA (Liu et al. 
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Fig. 2   Sedimentation velocity analysis of adenovirus VAI RNA indi-
cating its purity and sedimentation coefficient of 5.46 S
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2017), suggesting that AUC can be utilized to identify suit-
able buffer conditions for lncRNA. Incidentally, a study by 
Romani (2011) indicated that 15–18 mM Mg2+ concentra-
tion is maintained physiologically in different organelles. 
Furthermore, the authors also derived RH of RepA in a series 
of MgCl2 concentrations using SEDFIT. Similar to their pre-
vious studies (Somarowthu et al. 2015), they determined the 
K1/2Mg to be 4.8 ± 0.2 mM for lncRNA RepA. In summary, 
AUC provided an optimal concentration range of MgCl2 for 
RepA folding and homogeneity, which helps to examine 
the secondary structure profile of RepA using SHAPE and 
DMS probing and to finally build the computational models 
based on the experimentally determined secondary structure 
of RepA.

Thus, AUC studies were instrumental in solving a chal-
lenging issue of multiple conformations and misfolding of 
lncRNAs HOTAIR and Xist as well as other lncRNAs for 
eventual structural studies.

Concluding remarks

The examples discussed here highlight the importance of 
applications of AUC in the emerging field of ncRNAs. The 
capability and adaptability of AUC to characterize bio-
molecules qualitatively as well as quantitatively makes it a 
unique technique to ascertain the quality of RNA intended 
to be used for other experiments. The structural biology 
techniques employed to determine low- or high-resolution 
structures of ncRNAs require a pure and monodispersed 
preparation of ncRNAs and their complexes. AUC offers 
several benefits over other techniques (e.g., electrophore-
sis and SEC), such as in-solution measurements, extremely 
flexible buffer conditions, and a wide range of temperatures. 
AUC can obtain accurate and reliable information on purity, 
aggregation, degradation, and detection of multiple confor-
mations of ncRNAs. Therefore, we anticipate that the appli-
cation of AUC in the ncRNA world will likely increase in 
the coming years.
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