Transport Processes

Transport processes - Irreversible processes:

- System is in a non-equilibrium state and relaxes towards an equilibrium
- Transport occurs due to a potential applied to the system:

Process	Potential	Flow of	Equilibrium State	Experiment:
Electrical conduction	Electrostatic	Electrons	Uniform electrostatic potential	Electrophoresis
Heat Conduction	Temperature	Heat	Uniform temperature	
Diffusion	Chemical Potential	Molecules	Uniform chemical potential	light scattering, analytical ultracentrifugation
Sedimentation	Total potential (chemical potential + centrifugal potential energy)	Molecules	Uniform total potential	analytical ultracentrifugation

The flow is proportional to the gradient in the potential:

 $J_i = -L_i \frac{\partial U_i}{\partial x}$

Transport Processes

Figure 14.3 Diffusion as a mixing process. If the solvent is layered over solution, diffusion ultimately leads to uniform concentration throughout the vessel.

From: van Holde, Johnson & Ho (1998)

Fig. 21-1. Progress of a diffusion experiment with initially sharp boundary at x = 0.

Transport Processes

How do we measure Diffusion?

- 1. Boundary method
- 2. Dynamic light scattering
- **3. Sedimentation Velocity**

Diffusion: Boundary Method

Diffusion Equation:

with solution:

 $\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} \qquad \left(\frac{\partial C}{\partial x}\right)_{T,P} = C_0 \frac{1}{2\sqrt{\pi D t}} e^{\frac{-(x-x_0)^2}{4Dt}}$

Substitute: $4 D t = 2 \sigma^2$ Gaussian Equation:

$$\left(\frac{\partial C}{\partial x}\right)_{T,P} = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Diffusion: Boundary Method

Gaussian Equation:
$$\left(\frac{\partial C}{\partial x}\right)_{T,P} = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Thorne R G et al. PNAS 2008;105:8416-8421 PNAS

There are 3 types of light scattering in use:

Static light scattering (observe over long time) Obtain weight-average molecular weight Measure inline with SEC (SEC-MALS) Detect aggregates Obtain radius of gyration (large molecules only)

Dynamic light scattering (observe over short time) Obtain diffusion coefficients

Small-angle X-ray/neutron scattering Short wavelengths provide shape information

For small particles (particle size < 1/50 of wavelength) the scattering is essentially independent of angle. This type of scattering is also called *Rayleigh Scattering*

Larger molecules produce an angular dependency and the *Radius of Gyration* can be measured directly.

The scattering is dependent on the concentration, the angle (for large molecules), and the size of the particle.

Static Light Scattering

Scattering from SMALL Particles ($\emptyset < 1/50^{\text{th}} \lambda$): Rayleigh Scattering

Rayleigh Ratio: Instantaneous Scattering:

$$R_{\theta} = \frac{\overline{I}}{I_{0}} \frac{r^{2}}{1 + \cos^{2}\theta} \quad (1) \qquad \frac{\overline{I}}{I_{0}} = K \frac{\left(1 + \cos^{2}\theta\right) MC}{r^{2}\left[1 + C\left(\partial \ln y/\partial C\right)\right]} \quad (2)$$

d

For a single particle:

$$\frac{\overline{I}}{I_0} = \frac{1 + \cos^2 \theta}{2r^2} \left(\frac{2\pi}{\lambda}\right)^4 \left(\frac{n^2 - 1}{n^2 + 2}\right)^2 \left(\frac{d}{2}\right)^6 \quad (3)$$

- θ = scattering angle
- R_{θ} = Rayleigh ratio at angle θ
- \overline{I} = average measured scattering intensity
- I_0 = incident intensity
- N = Avogadro's number
- n = refractive index
- n_0 = refractive index of solvent

where $K = \frac{2\pi^2 n_0^2 (dn/dC)^2}{N\lambda^4}$

- dn/dC = refractive index increment
- *M* = molecular weight
- *C* = concentration of solute
- $\ln y$ = chemical potential
- *B* = 2nd virial coefficient
- *r* = distance from scattering center
 - = diameter of the scattering particle

Rayleigh Scattering

Scattering from SMALL Particles ($\emptyset < 1/50^{\text{th}} \lambda$): Rayleigh Scattering

Combine equations (1) and (2):

$$\frac{KC}{R_{\theta}} = \frac{1}{M} \left(1 + C \frac{\partial \ln(y)}{\partial C} \right)$$

This can be approximated by:

$$\frac{KC}{R_{\theta}} \approx \frac{1}{M} + 2BC$$

At zero concentration:

$$\frac{KC}{R_{\theta}} = \frac{1}{M}$$

Rayleigh Scattering

For heterogeneous solutions the light scattering method gives a *weight average* molecular weight:

$$R_{\theta} = \sum_{i=1}^{k} R_{\theta,i} = \sum_{i=1}^{k} KC_{i}M_{i} = KC \left[\frac{\sum_{i=1}^{k} C_{i}M_{i}}{\sum_{i=1}^{k} C_{i}} \right] = K\bar{M}_{w}C$$

The weight average molecular weight is biased towards the large molecules in the mixture. This makes light scattering sensitive for *aggregates*.

Light Scattering from Large Particles

Scattering from large particles (diameter > $1/50^{\text{th}} \lambda$):

Figure 7.5 Scattering from a macromolecule that is large compared to λ . Two points from which scattering occurs are shown at A and B. The phase of the radiation (and hence of the induced dipoles) is clearly different at the two points. Also, the two points are at different distances from the observer.

The scattering from all scattering centers in large molecules needs to be considered. Scattering centers are fixed with respect to each other, but since Brownian motion places the molecule in multiple orientations, the observed scattering is influenced by interference and we need to introduce a new function, $P(\theta)$. $P(\theta)$ is the ratio of the observed scattered intensity over the theoretical scattering intensity if the molecule were a Rayleigh scatterer with scattering centers infinitesimal in size compared to λ .

$$\frac{1}{P(\theta)} \approx \left(1 + \frac{16\pi^2}{3} \frac{R_G^2}{\lambda^2} \sin^2(\theta/2)\right)$$

If λ = 500 nm and R₆ = 50 nm:

If λ = 500 nm and R_g = 5 nm:

 $1/P(\theta) = 1.530 \text{ at } \theta = 180^{\circ} \text{ (max. angle)}$ $1/P(\theta) = 1.265 \text{ at } \theta = 90^{\circ}$ $1/P(\theta) = 1.013 \text{ at } \theta = 9^{\circ}$ $1/P(\theta) = 1.0053 \text{ at } \theta = 180^{\circ}$ $1/P(\theta) = 1.0003 \text{ at } \theta = 90^{\circ}$ $1/P(\theta) = 1.0001 \text{ at } \theta = 9^{\circ}$ (No correction)

(Rayleigh scattering is observed)

For large particles, we need to introduce a function $P(\theta)$ to account for the angular dependency. For small particles this function reduces to unity, and the large molecule function reduces to the Rayleigh Scattering function:

For small molecules, we have:

$$\frac{KC}{R_{\theta}} \approx \frac{1}{M} + 2BC$$

For large molecules, we have:

$$\frac{KC}{R_{\theta}} \approx \frac{1}{P(\theta)} \left[\frac{1}{M} + 2BC \right]$$

For large molecules, we have:

$$\frac{KC}{R_{\theta}} \approx \frac{1}{P(\theta)} \left[\frac{1}{M} + 2BC \right]$$

where:
$$P(\theta) = \frac{1}{N^2} \left[\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} \sin h R_{i,j}}{h R_{i,j}} \right]$$
 and: $h = \frac{4\pi}{\lambda} \sin \frac{\theta}{2}$

 $R_{i,j}$ are the scattering centers, N is the number of centers

For small molecules, $R_{i,j} \rightarrow 0$, for small angles, $h \rightarrow 0$, and $P(\theta) \rightarrow 1$

$$P(\theta) = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} (1) = \frac{1}{N^2} N^2 = 1$$

Without further derivation – the angular dependency can be expressed in terms of the radius of gyration, R_{g} :

$$R_G^2 = \frac{1}{2N^2} \sum_{i=1}^N \sum_{j=1}^N R_{ij}^2$$
$$\frac{1}{P(\theta)} \approx 1 + \frac{16\pi^2 R_G^2}{3\lambda^2} \sin^2 \frac{\theta}{2} \qquad \frac{KC}{R_\theta} \approx \frac{1}{P(\theta)} \left[\frac{1}{M} + 2BC \right]$$

$$\frac{KC}{R_{\theta}} \approx \frac{1}{P(\theta)} \left[\frac{1}{M} + 2BC \right] \approx \left(1 + \frac{16\pi^2 R_G^2}{3\lambda^2} \sin^2 \frac{\theta}{2} \right) \left(\frac{1}{M} + 2BC \right)$$

To measure the radius of gyration, the molecular weight and the 2nd virial coefficient, make a *ZIMM* plot:

Extrapolate KC/R_{θ} for multiple angles and multiple concentrations to zero concentration and zero angle:

$$\begin{bmatrix} \frac{KC}{R_{\theta}} \end{bmatrix}_{C=0} = \frac{1}{M} \left(1 + \frac{16\pi^2 R_G^2}{3\lambda^2} \sin^2 \frac{\theta}{2} \right), \text{ Slope: } \frac{16\pi^2 R_G^2}{3\lambda^2}, \text{ Intercept: } \frac{1}{M} \\ \begin{bmatrix} \frac{KC}{R_{\theta}} \end{bmatrix}_{\theta=0} = \frac{1}{M} + 2BC \quad \text{Slope} \sim B, \text{ Intercept} \sim M \end{cases}$$

For further details and a derivation of these equations, consult: K. E. van Holde, *Biophysical Chemistry*, chapter 9, 2nd edition, Prentice Hall, 1985 To measure, make a ZIMM plot: Extrapolate KC/R_{θ} for multiple angles and multiple concentrations to zero concentration and zero angle:

 $sin^2(\theta/2) + aC$

Dynamic Light Scattering

Fluctuations in scattering intensity of three different sized proteins:

Dynamic Light Scattering - Autocorrelation

$$\overline{i} = \frac{1}{n} \sum_{j=1}^{n} i_j(t), \quad \Delta i(t) = i(t) - \overline{i}$$

Dynamic Light Scattering

$$\overline{i} = \frac{1}{n} \sum_{j=1}^{n} i_j(t), \quad \Delta i(t) = i(t) - \overline{i}$$

$$A(\tau) = \sum \Delta i(t) \Delta i(t+\tau)$$

 $\boldsymbol{\tau}$ is on the order of microseconds

$$A(\tau) = A(\theta)e^{-\tau/\tau_{\theta}}$$

where $\tau_{\theta} = \frac{l}{K_{2}D}$,
$$K = \frac{4\pi n}{\lambda_{\theta}}\sin\frac{\theta}{2}$$

Dynamic Light Scattering - Autocorrelation

Dynamic Light Scattering - Autocorrelation

DLS Correlation Plot