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Multi-speed Sedimentation Velocity — Pros and Cons

Gz or

Cons

1. Beckman Proteomelab XLA or XLI AUC only records scans at a constant
speed

2. Solvent compressibility

Pros
1. Exploits S and D signals for individual solutes
2. Rotor stretch factor accounted for each speed step

3. UltraScanlIII detects when a solute has pelleted out of view and
automatically excludes it from the fit

4. UltraScanlIII applies a correction to boundary conditions for each
experimental data



1. Background
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Figure 1. Chromatin self-association at increasing [MgCl2]

Heterogeneous samples may exhibit unique sedimentation
coefficients and move at different speeds in different
environments. Thus, their composition cannot be resolved at
only one speed!
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Adaptive Space-Time Finite Element Solution (ASTFEM)
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AUC experiments are modelled by the finite element solution of the Lamm equation

ASTFEM is a major improvement from
its counterparts (e.g., the Moving hat
finite element method by Schuck et. al)

ASTFEM removes oscillation at the
bottom by using an adaptive grid
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a) Simulation

Aim: To design a speed profile for heterogeneous solutes

o .0 Parameter/Solute Solute 1 Solute 2 Solute 3 Solute 4 Solute 8
5 distinct solutes -
o . . R A T % 25 F7 g 5
with different 5 (% 10" sec) L0111 2 3464 72608 35276 13,858
anisotropies Dox 107 em¥isee) | 18.862 | 43774 | 13545 | 047154 | 07509
Density and . Molar mass (Dap | 5.0=10° | 50100 | 5.0 10° | 5.0=100 | 50= 107
viscosity of Increasing speeds
0 £fy 1.0 2.0 30 4.0 5.0
water at 20°C Control 15,000
rpm Slngle_speed Absorbance .z .2 0.z 1.2 0.2
’ ‘ ‘ experiment Sestle) 0.74 0.74 0.74 0.74 0.74
Rotor stretch W
added for each
speed step Speed step . | |
using Simulation speeds and durations.
acceleration time
Artificial \ ’ delay Speedstep: I 2 3 4 5
i 1 . . Rotor speed | as00 | 7500 | 15000 | 30,000 | 60,000
SthCha;tlch;O;ST Finite element otor speed (rpm)
o104 OtO to a Solution Dwration (hh;mm 3713 | 25:56 2203 Iac 1 (754
concentration . .
SlmAlsl%tFegl\‘?Inth Delay (minutes): | 0167 | 0167 | 0317 | 1875 | 1875
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b) Experimental design
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Aim: To generate a model for all possible S and D in the solution
(b |
[ = ll)(‘ m }

Equ. |

NON

Speed: determine S value distribution Determining the theoretical duration for a
using a single-speed experiment multi-speed AUC SV experiment

»The theoretical duration, t is set to
the time required for the midpoint to
reach past the cell bottom

int next_rpm (int);
double calc_time(int, double);
double calc_b (double, int, double);

=Equ. 11s used to find all other ¢ double omega_s (int):
Values.. : double m, meniscus=5.9, b=7.2, largest_s=4e-12;
Each species acquires a new m int first_speed=6000, rotor_max=50000;

from each speed step

Figure 5. C++ program to predict appropriate rotor speed and experimental duration



2. Methods

c) Fitting — UltraScanll

Version 4.0 ( 7034 ) for Linux

Borries Demeler
Emre Brookes
Alexey Savelyev
Gary Gorbet
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Aim of fitting: to compare
experimental data with simulated data

UltraScanlIII separates each speed step
into a separate experimental dataset

Pseudo-global analysis (addresses limitation)

1.

Each speed step is analyzed individually over the

expected sedimentation and anisotropy range

. Merged into a global model

. Parameters are refined for each speed step



c) Fitting — Time Derivative Method

1. Identify the maximum S value for the range
to be fitted

a. The upper S limit is estimated by taking a
group of scans at the end of the first speed step

b. Cut-off: where the time-derivative distribution
approaches zero on the high end of the
sedimentation coefficient spectrum

Before 2-DSA: Choose f/f, based on knowledge
about the solutes
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Result 1 — 2-DSA and GA-MC

(i Tob
Combined 2DSA & GA-MC result
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1A) Determine solute regions (2DSA-MC)

1B) Species with the smallest 95% confidence limit shown from manually
combined solutes in 1A (2DSA-MC)

1C) GA-MC for discrete species from each speed step



3. Results

Result 2 — 2DSA-MC for each speed step

Purpose
Time - and radially invariant noise
removal

Result
Each solute is resolved at a different
speed step

Partial concentration of solutes at
each speed — if present, how much of
a solute is available at each speed
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Result 3 — Percent error 2DSA-MC & GA-MC

Result m 38 krpm 7.5 krpm o0 30 krpm . 0 krpm
s 7 "}u-. 1 10{
Generally, GA-MC illustrates a lower = i !
percent error than 2DSA-MC for the 5 5 N
o
resolved solute at each speed step > 5 ” L
l Lo \ .. . — . ..
At each speed step, only one solute e L <
procures a <1% percent error = I N " -
C_CU § 150
S &
S =
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3. Results

Result 4 — 95% ClI for 2DSA-MC & GA-MC

Purpose

Increases confidence that values will fall
between the upper and lower values for

the CI

Corroborates the percent error and two-
dimensional analysis methods used

Result

Low 95% CIs are observed for GA-MC
and 2DSA-MC for each speed step.
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3. Results
Result 5 — 95% CI
multi-speed
Conclusion

Multi-speed experiment showed
good statistics results compared to
the single-speed experiment

2DSA — 54% better
GA-MC — 60% better

comparison of single-speed to

95% Confidence Interval
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4. Summary

The single-speed SVE did not procure confident
MW and f/f, results for heterogeneous solutes

However, heterogeneous solutes can be resolved
individually using different rotor speeds and
duration based on sedimentation coefficients

GA-MC and 2DSA-MC multi-speed SVE results
procured significantly lower 95% CI for each solute
resolved at different speeds than the single-speed
experiment

Therefore, multi-speed SVE is a reliable approach
to resolve non-interacting heterogeneous solutes
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